Bayesian identifiability and misclassification in multinomial data
نویسندگان
چکیده
The authors consider the Bayesian analysis of multinomial data in the presence of misclassification. Misclassification of the multinomial cell entries leads to problems of identifiability which are categorized into two types. The first type, referred to as the permutation-type nonidentifiabilities, may be handled with constraints that are suggested by the structure of the problem. Problems of identifiability of the second type are addressed with informative prior information via Dirichlet distributions. Computations are carried out using a Gibbs sampling algorithm. Identifiabilité et erreurs de classification dans l’analyse bayésienne de données multinomiales Résumé : Les auteurs s’intéressent à l’analyse bayésienne de données multinomiales en présence d’erreurs de classification. De telles erreurs causent des problèmes d’identifiabilité de deux types. Les problèmes d’identifiabilité de type permutationnel sont traités à l’aide de contraintes suggérées par le contexte. Les problèmes d’identifiabilité de l’autre type sont réglés par l’emploi de lois a priori de Dirichlet informatives. Les calculs sont effectués au moyen d’un algorithme d’échantillonneur de Gibbs.
منابع مشابه
تعدیل اریبی نسبت شانس حاصل از طبقهبندی نادرست مواجههها با استفاده از روشهای بیزی در بررسی عوامل محیطی مرتبط با سرطان ریه
Background & Objective: Inability to measure exact exposure in epidemiological studies is a common problem in many studies, especially cross-sectional studies. Depending on the extent of misclassification, results may be affected. Existing methods for solving this problem require a lot of time and money and it is not practical for some of the exposures. Recently, new methods have been proposed ...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملDiagonal Orthant Multinomial Probit Models
Bayesian classification commonly relies on probit models, with data augmentation algorithms used for posterior computation. By imputing latent Gaussian variables, one can often trivially adapt computational approaches used in Gaussian models. However, MCMC for multinomial probit (MNP) models can be inefficient in practice due to high posterior dependence between latent variables and parameters,...
متن کاملIdentifiability of Finite Mixtures of Multinomial Logit Models with Varying and Fixed Effects
Unique parametrizations of models are very important for parameter interpretation and consistency of estimators. In this paper we analyze the identifiability of a general class of finite mixtures of multinomial logits with varying and fixed effects, which includes the popular multinomial logit and conditional logit models. The application of the general identifiability conditions is demonstrate...
متن کاملBayesian Inference for Categorical Data with Misclassification Errors
In epidemiological studies, observed data are often collected subject to misclassification errors. In this paper, we discuss the Bayesian estimation for contingency table with misclassification errors. Employing the exact Bayesian computations to obtain posterior means as estimates, we are faced with computational difficulties. In order to find the posterior distribution, we apply the data augm...
متن کامل